The Erwinia amylovora avrRpt2(EA) Gene Contributes to Virulence on Pear and AvrRpt2(EA) Is Recognized by Arabidopsis RPS2 When Expressed in Pseudomonas syringae
2006
Zhao, Y. | He, S.Y. | Sundin, G.W.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In an attempt to identify genes induced during infection of host plants, we identified and cloned a putative effector gene, avrRpt2(EA). The deduced amino-acid sequence of the translated AvrRpt2(EA) protein is homologous to the effector protein AvrRpt2 previously reported in Pseudomonas syringae pv. tomato. These two proteins share 58% identity (70% similarity) in the functional domain; however, the secretion and translocation signal domain varied. The avrRpt2(EA) promoter region contains a typical 'hrp box,' which suggests that avrRpt2(EA) is regulated by the alternative sigma factor, HrpL. avrRpt2(EA) was detected in all E. amylovora strains tested but not in other closely related Erwinia species. An avrRpt2(EA) deletion mutant was reduced in its ability to cause systemic infection on immature pear fruits as compared with the wild-type strain, indicating that avrRpt2(EA) acts as a virulence factor on its native host. Growth of P. syringae pv. tomato DC3000 expressing avrRpt2EA was 10-fold higher than that of P. syringae pv. tomato DC3000 in an Arabidopsis rps2 mutant, indicating that avrRpt2(EA) promotes virulence of P. syringae pv. tomato DC3000 on Arabidopsis similar to P. syringae pv. tomato avrRpt2. When avrRpt2(EA) was expressed in P. syringae pv. tomato DC3000 in its native form, a weak hypersensitive response (HR) was induced in Arabidopsis; however, a hybrid protein containing the P. syringae pv. tomato avrRpt2 signal sequence, when expressed from the P. syringae pv. tomato avrRpt2 promoter, caused a strong HR. Thus, the signal sequence and promoter of avrRpt2(EA) may affect its expression, secretion, or translocation, singly or in combination, in P. syringae pv. tomato DC3000. These results indicated that avrRpt2(EA) is genetically recognized by the RPS2 disease resistance gene in Arabidopsis when expressed in P. syringae pv. tomato DC3000. The results also suggested that although distinct pathogens such as E. amylovora and P. syringae may contain similar effector genes, expression and secretion of these effectors can be under specific regulation by the native pathogen.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library