Radionuclide Transport in Granitic Rock Considering Multiple-Member Decay Chain: Application of Spent Nuclear Fuel Final Disposal
2011
Shih, David Ching-Fang
Application of one-dimensional transport considering multiple member of decay chain in a single rock fracture has been studied. Input sources for constant, pulse, impulse, Heaviside, and exponential decay have been used to demonstrate the suitability of relevant solutions. It shows that the breakthrough curves of dimensionless concentration for the three-member decay chain for Np-237 and the seven-member chain for Cm-246 can be well presented in the temporal and spatial domains. The analytical solutions of this study can clearly demonstrate the general form of contaminant transport with complete multiple-member decay chain in one-dimensional fractured or porous media of arbitrary analytical input sources without considering the matrix diffusion, which the conceptual model provides an alternative type to demonstrate the fate of radionuclide transport in the geosphere. The solutions are conservatively used to support the performance assessment for disposal site of radioactive waste. An application to a hybrid test site for the final disposal of spent nuclear fuel is newly demonstrated. Proposed solution to simulate the transport of nuclides in the one-dimensional pathway of host rock becomes feasible, so that the simulation and prediction of radionuclide transport of fractured media existing in geosphere can be conservatively performed in the future.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library