Bacterial toxicity comparison between nano- and micro-scaled oxide particles
2009
Jiang, Wei | Xing, Baoshan
Toxicity of nano-scaled aluminum, silicon, titanium and zinc oxides to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles but titanium oxide showed higher toxicity (at 20 mg/L) than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three nanoparticles, causing 100% mortality to the three tested bacteria. Al2O3 nanoparticles had a mortality rate of 57% to B. subtilis, 36% to E. coli, and 70% to P. fuorescens. SiO2 nanoparticles killed 40% of B. subtilis, 58% of E. coli, and 70% of P. fluorescens. TEM images showed attachment of nanoparticles to the bacteria, suggesting that the toxicity was affected by bacterial attachment. Bacterial responses to nanoparticles were different from their bulk counterparts; hence nanoparticle toxicity mechanisms need to be studied thoroughly. Oxide nanoparticles show higher toxicity than their bulk counterparts.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library