Electrocatalytic degradation of the herbicide metamitron using lead dioxide anode: influencing parameters, intermediates, and reaction pathways
2019
Yang, Yang | Cui, Leilei | Li, Mengyao | Zhang, Liman | Yao, Yingwu
In the present study, the electrocatalytic degradation of triazine herbicide metamitron using Ti/PbO₂-CeO₂ composite anode was studied in detail. The effects of the current density, initial metamitron concentration, supporting electrolyte concentration, and initial pH value were investigated and optimized. The results revealed that an electrocatalytic approach possessed a high capability of metamitron removal in aqueous solution. After 120 min, the removal ratio of metamitron could reach 99.0% in 0.2 mol L⁻¹ Na₂SO₄ solution containing 45 mg L⁻¹ metamitron with the current density at 90 mA cm⁻² and pH value at 5.0. The reaction followed the pseudo-first-order kinetics model. HPLC and HPLC-MS were employed to analyze the degradation by-products in the metamitron oxidization process, and the degradation pathway was also proposed, which was divided into two sub-routes according to the different initial attacking positions on metamitron by hydroxyl radicals. Therefore, the electrocatalytic approach was considered as a very promising technology in practical application for herbicide wastewater treatment.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library