Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay
2022
Zhang, Lei | He, Kai | Wang, Tong | Liu, Cheng | An, Yanfei | Zhong, Jicheng
Freshwater ecosystems play a key role in global greenhouse gas estimations and carbon budgets, and algal blooms are widespread owing to intensified anthropological activities. However, little is known about greenhouse gas dynamics in freshwater experiencing frequent algal blooms. Therefore, to explore the spatial and temporal variations in methane (CH₄) and carbon dioxide (CO₂), seasonal field investigations were performed in the Northwest Bay of Lake Chaohu (China), where there are frequent algal blooms. From the highest site in the nearshore to the pelagic zones, the CH₄ concentration in water decreased by at least 80%, and this dynamic was most obvious in warm seasons when algal blooms occurred. CH₄ was 2–3 orders of magnitude higher than the saturated concentration, with the highest in spring, which makes this bay a constant source of CH₄. However, unlike CH₄, CO₂ did not change substantially, and river mouths acted as hotspots for CO₂ in most situations. The highest CO₂ concentration appeared in winter and was saturated, whereas at other times, CO₂ was unsaturated and acted as a sink. The intensive photosynthesis of rich algae decreased the CO₂ in the water and increased dissolved oxygen and pH. The increase in CH₄ in the bay was attributed to the mineralization of autochthonous organic carbon. These findings suggest that frequent algal blooms will greatly absorb more CO₂ from atmosphere and increasingly release CH₄, therefore, the contribution of the bay to the lake's CH₄ emissions and carbon budget will be major even though it is small. The results of this study will be the same to other shallow lakes with frequent algal bloom, making lakes a more important part of the carbon budget and greenhouse gases emission.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library