Synthesising acid mine drainage to maintain and exploit indigenous mining micro-algae and microbial assemblies for biotreatment investigations
2013
Orandi, Sanaz | Lewis, David M.
The stringent regulations for discharging acid mine drainage (AMD) has led to increased attention on traditional or emerging treatment technologies to establish efficient and sustainable management for mine effluents. To assess new technologies, laboratory investigations on AMD treatment are necessary requiring a consistent supply of AMD with a stable composition, thus limiting environmental variability and uncertainty during controlled experiments. Additionally, biotreatment systems using live cells, particularly micro-algae, require appropriate nutrient availability. Synthetic AMD (Syn-AMD) meets these requirements. However, to date, most of the reported Syn-AMDs are composed of only a few selected heavy metals without considering the complexity of actual AMD. In this study, AMD was synthesised based on the typical AMD characteristics from a copper mine where biotreatment is being considered using indigenous AMD algal-microbes. Major cations (Ca, Na, Cu, Zn, Mg, Mn and Ni), trace metals (Al, Fe, Ag, Na, Co, Mo, Pb and Cr), essential nutrients (N, P and C) and high SO₄ were incorporated into the Syn-AMD. This paper presents the preparation of chemically complex Syn-AMD and the challenges associated with combining metal salts of varying solubility that is not restricted to one particular mine site. The general approach reported and the particular reagents used can produce alternative Syn-AMD with varying compositions. The successful growth of indigenous AMD algal-microbes in the Syn-AMD demonstrated its applicability as appropriate generic media for cultivation and maintenance of mining microorganisms for future biotreatment studies.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library