Remediation of Anthracene-Contaminated Soil by ClO2 in the Presence of Magnetic Fe3O4-CuO@Montmorillonite as Catalyst
2016
Ma, Yulin | Gu, Na | Gao, Jinlong | Wang, Kuitao | Wu, Yunxia | Meng, Xiaoyu
Fe₃O₄-CuO@montmorillonite was prepared using coprecipitation method, and its structure was determined by XRD, IR, and transmission electron micrograph (TEM). Montmorillonite in Fe₃O₄-CuO@montmorillonite nanocomposite allowed the silicate layer of montmorillonite to behave as a barrier, which prevented the agglomeration and natural crystallization of Fe₃O₄ and CuO. Furthermore, the chlorine dioxide (ClO₂) oxidative degradation of anthracene-contaminated soil was studied in detail using Fe₃O₄-CuO@montmorillonite as a magnetic heterogeneous catalyst. The operating parameters such as ClO₂ concentration, catalyst dosage, reaction time, and pH were evaluated. Compared with the conventional ClO₂ oxidation process without the catalyst, the ClO₂ catalytic oxidation system could significantly enhance the degradation efficiency. Under the optimal condition (anthracene concentration 89.8 mg/kg, water soil mass ratio 3:1, initial pH 7, ClO₂ concentration 1 mol/kg, catalyst dosage 1 g/kg, reaction time 30 min, and reaction temperature 25 °C), anthracene degradation efficiency achieved 96.2 %. The catalyst could be easily reused by magnetic separation and used at least 8 cycles without obvious loss of activity. The kinetic studies revealed that the ClO₂ catalytic oxidation degradation of anthracene-contaminated soil with Fe₃O₄-CuO@montmorillonite as catalyst followed pseudo-first-order kinetics with respect to ClO₂ concentration. Thus, this study showed potential application of ClO₂ catalytic oxidation process in remediation of organic pollutant-contaminated soil.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library