Riparian forest buffer system research at the Coastal Plain Experiment Station, Tifton, GA
1994
Hubbard, R.K. | Lowrance, R.R.
Recent attention has focused on riparian forest buffer systems for filtering sediment, nutrients, and pesticides entering from upslope agricultural fields. Studies in a variety of physiographic areas have shown that concentrations of sediment and agrichemicals are reduced after passage through a riparian forest. The mechanisms involved are both physical and biological, including deposition, uptake by vegetation, and loss by microbiological processes such as denitrification. Current research by USDA-ARS and University of Georgia scientists at Tifton, GA is focusing on managing riparian forest buffer systems to alleviate agricultural impacts on the environment. The underlying concept for this research is that agricultural impact on streams is best protected by a riparian forest buffer system consisting of three zones. In consecutive upslope order from the stream these zones are (1) a narrow band of permanent trees (5-10 m wide) immediately adjacent to the stream channel which provides streambank stabilization, organic debris input to streams, and shading of streams, (2) a forest management zone where maximum biomass production is stressed and frees can be harvested, and (3) a grass buffer strip up to 10 m wide to provide control of coarse sediment and to spread overland flow. Several ongoing projects at Tifton, GA are focusing on using riparian forest buffer systems as filters. A forest management project is testing the effects of different management practices on surface and ground water quality. This project includes three different forest management practices: mature forest, selectively thinned forest, and clearcut. In a different study a natural wetland is being restored by planting frees. The effectiveness of this wetland on filtering nutrients from dairy wastes which are being applied upslope is being evaluated. At this same site, a pesticide study is being conducted on the side opposite to where dairy wastes are applied. An overland flow-riparian buffer system using swine lagoon waste is evaluating the effectiveness of different vegetative treatments and lengths of buffer zones on filtering of nutrients. In this study three vegetative treatments are compared: (1) 10 m grass buffer and 20 m riparian forest, (2) 20 m grass buffer and 10 m riparian forest, (3) 10 m grass buffer and 20 m of the recommended wetland species maidencane. Waste is applied at the upper end of each plot at either a high or low rate, and then allowed to flow downslope. The three zone riparian forest buffer system is being used for the Riparian Ecosystem Management Model (REMM). This model, which is currently under development at Tifton, GA, is a computer simulation model designed to reduce soil and water degradation by aiding farmers and land use managers in decision making regarding how best to utilize their riparian buffer system. Both information currently being collected in field studies and development of the REMM are innovative farm-level and forestry technologies to protect soil and water resources.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library