The combined effects of Cd and Pb enhanced metal binding by root cell walls of the phytostabilizer Athyrium wardii (Hook.)
2020
Zhan, Juan | Huang, Huagang | Yu, Haiying | Zhang, Xizhou | Zheng, Zicheng | Wang, Yongdong | Liu, Tao | Li, Tingxuan
Cell wall acts as a major metal sink in plant roots, while a few studies focused on root cell wall binding in plants for the phytostabilization of multi-metal contaminated soils. A pot experiment was performed to characterize root cell wall properties of the mining ecotype (ME) and non-mining ecotype (NME) of Athyrium wardii (Hook.) in response to Cd and Pb. The cell wall was found to be the major sink for Cd (41.3–54.3%) and Pb (71.4–73.8%) accumulation in roots of the ME when exposed to Cd and/or Pb. The ME showed more Cd and Pb accumulation in root cell walls when exposed to Cd and Pb simultaneously, compared with those exposed to single Cd or Pb as well as the NME, suggesting some modifications for cell walls. The uronic acid contents of pectin and hemicellulose 1 (HC1) in root cell walls of the ME increased significantly when exposed to Cd and Pb simultaneously, suggesting enhanced cell wall binding capacity, thus resulting in more Cd and Pb bound to pectin and HC1. In particular, pectin was found to be the predominant binding site for Cd and Pb. Greater pectin methylesterase activity along with a lower degree of methylesterification were observed in the cell walls of the ME when exposed to Cd and Pb simultaneously. Furthermore, the ME present more O–H, N–H, C–OH, C–O–C, C–C and/or Ar–H in root cell walls when exposed to Cd and Pb simultaneously. These changes of root cell wall properties of the ME lead to enhanced cell wall binding ability in response to the co-contamination of Cd and Pb, thus could be considered a key process for enhanced Cd and Pb accumulation in roots of the ME when exposed to Cd and Pb simultaneously.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library