Arbuscular mycorrhizal colonization increases plant above-belowground feedback in a northwest Chinese coal mining–degraded soil by increasing photosynthetic carbon assimilation and allocation to maize
2022
Bi, Yinli | Wang, Xiao | Cai, Yun | Christie, Peter
A three-compartment culture system was used to study the mechanism by which the AM fungus Funneliformis mosseae influences host plant growth and soil organic carbon (SOC) content in a northwest China coal mining area. A ¹³CO₂ pulse tracing technique was used to trace the allocation of maize photosynthetic C in shoots, roots, AM fungus, and soil. Carbon accumulation and allocation in mycorrhizal (inoculated with Funneliformis mosseae) and non-mycorrhizal treatments were detected. AM fungal inoculation significantly increased the ¹³C concentration and content in both above- and below-ground plant parts and also significantly enhanced anti-aging ability by increasing soluble sugars and catalase activity (CAT) in maize leaves while reducing foliar malondialdehyde content (MDA) and leaf temperature and promoted plant growth. AM fungi also increased P uptake to promote maize growth. Soil organic carbon (SOC), glomalin, microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly after inoculation. A mutually beneficial system was established involving maize, the AM fungus and the microbiome, and the AM fungus became an important regulator of C flux between the above- and below-ground parts of the system. Inoculation with the AM fungus promoted plant growth, C fixation and allocation belowground to enhance soil quality. A positive above-belowground feedback appeared to be established.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library