Nickel bioaccessibility in soils with high geochemical background and anthropogenic contamination
2022
Ding, Song | Guan, Dong-Xing | Dai, Zhi-Hua | Su, Jing | Teng, H Henry | Ji, Junfeng | Liu, Yizhang | Yang, Zhongfang | Ma, Lena Q.
Abnormally high concentrations of metals including nickel (Ni) in soils result from high geochemical background (HB) or anthropogenic contamination (AC). Metal bioaccessibility in AC-soils has been extensively explored, but studies in HB-soils are limited. This study examined the Ni bioaccessibility in basalt and black shale derived HB-soils, with AC-soils and soils without contamination (CT) being used for comparison. Although HB- and AC-soils had similar Ni levels (123 ± 43.0 vs 155 ± 84.7 mg kg⁻¹), their Ni bioaccessibility based on the gastric phase of the Solubility Bioaccessibility Research Consortium (SBRC) in vitro assay was different. Nickel bioaccessibility in HB-soils was 6.42 ± 3.78%, 2-times lower than the CT-soils (12.0 ± 9.71%) and 6-times lower than that in AC-soils (42.6 ± 16.3%). Based on the sequential extraction, a much higher residual Ni fractionation in HB-soils than that in CT- and AC-soils was observed (81.9 ± 9.52% vs 68.6 ± 9.46% and 38.7 ± 16.0%). Further, correlation analysis indicate that the available Ni (exchangeable + carbonate-bound + Fe/Mn hydroxide-bound) was highly correlated with Ni bioaccessibility, which was also related to the organic carbon content in soils. The difference in co-localization between Ni and other elements (Fe, Mn and Ca) from high-resolution NanoSIMS analysis provided additional explanation for Ni bioaccessibility. In short, based on the large difference in Ni bioaccessibility in geochemical background and anthropogenic contaminated soils, it is important to base contamination sources for proper risk assessment of Ni-contaminated soils.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library