N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation
2020
Zhao, Tianhe | Sun, Donglei | Zhao, Manyu | Lai, Yanhao | Liu, Yuan | Zhang, Zunzhen
N⁶-methyladenosine (m⁶A), the most abundant and reversible RNA modification, plays critical a role in tumorigenesis. However, whether m⁶A can regulate p53, a leading antitumor protein remains poorly understood. In this study, we explored the regulatory role of m⁶A on p53 activation using an arsenite-transformed keratinocyte model, the HaCaT-T cell line. We created the cell line by exposing human keratinocyte HaCaT cells to 1 μM arsenite for 5 months. We found that the cells exhibited an increased m⁶A level along with an aberrant expression of the methyltransferases, demethylase, and readers of m⁶A. Moreover, the cells exhibited decreased p53 activity and reduced p53 phosphorylation, acetylation, and transactivation with a high nucleus export rate of p53. Knockdown of the m⁶A methyltransferase, METTL3 significantly decreased m⁶A level, restoring p53 activation and inhibiting cellular transformation phenotypes in the arsenite-transformed cells. Further, using both a bioinformatics analysis and experimental approaches, we demonstrated that m⁶A downregulated the expression of the positive p53 regulator, PRDM2, through the YTHDF2-promoted decay of PRDM2 mRNAs. We showed that m⁶A upregulated the expression of the negative p53 regulator, YY1 and MDM2 through YTHDF1-stimulated translation of YY1 and MDM2 mRNA. Taken together, our study revealed the novel role of m⁶A in mediating arsenite-induced human keratinocyte transformation by suppressing p53 activation. This study further sheds light on the mechanisms of arsenic carcinogenesis via RNA epigenetics.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library