LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon
2015
Yu, Xiangquan | Sun, Weiling | Ni, Jinren
LSER models for organic compounds adsorption by single and multi-walled carbon nanotubes and activated carbon were successfully developed. The cavity formation and dispersion interactions (vV), hydrogen bond acidity interactions (bB) and π-/n-electron interactions (eE) are the most influential adsorption mechanisms. SWCNTs is more polarizable, less polar, more hydrophobic, and has weaker hydrogen bond accepting and donating abilities than MWCNTs and AC. Compared with SWCNTs and MWCNTs, AC has much less hydrophobic and less hydrophilic adsorption sites. The regression coefficients (e, s, a, b, v) vary in different ways with increasing chemical saturation. Nonspecific interactions (represented by eE and vV) have great positive contribution to organic compounds adsorption, and follow the order of SWCNTs > MWCNTs > AC, while hydrogen bond interactions (represented by aA and bB) demonstrate negative contribution. These models will be valuable for understanding adsorption mechanisms, comparing adsorbent characteristics, and selecting the proper adsorbents for certain organic compounds.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library