Differential effects of size-specific particulate matter on emergency department visits for respiratory and cardiovascular diseases in Guangzhou, China
2018
Ge, Erjia | Lai, Kefang | Xiao, Xiong | Luo, Ming | Fang, Zhangfu | Zeng, Yanjun | Ju, Hong | Zhong, Nanshan
Studies differentiating the cardiorespiratory morbidity effects of PM₂.₅, PM₁₀, and PM₂.₅∼₁₀ (i.e. coarse PM or PMc) are still limited and inconsistent.To estimate the acute, cumulative, and harvesting effects of exposure to the three size-specific PM on cardiorespiratory morbidity, and their concentration-response relations.A total of 6,727,439 emergency department (ED) visits were collected from 16 public teaching hospitals in Guangzhou, from January 1st 2012 to December 31st 2015, among which over 2.1 million were asthma, COPD, pneumonia, respiratory tract infection (RTI), hypertension, stroke, and coronary heart disease (CHD). Distributed lag non-linear models (DLNM) was used to estimate the associations between the three size-specific PM and ED visits for the cardiovascular diseases. Long-term trends, seasonality, influenza epidemics, meteorological factors, and other gas pollutants, including SO2, NO₂, and O₃, were adjusted. We stratified the analyses by gender and age.Elevated PM₂.₅ and PM₁₀ were significantly associated with increased ED visits for pneumonia, RTI, and CHD at both lag₀ and lag₀₋₃. A 10 μg/m³ increment of PMc (at lag₀₋₁₄) was estimated to increase ED visits for pneumonia by 6.32% (95% CI, 4.19, 8.49) and for RTI by 4.72% (95% CI, 3.81, 5.63), respectively. PMc showed stronger cumulative effects on asthma in children than elderly. We observed significant harvesting effects (i.e. morbidity displacements) of the three size-specific PM on respiratory but very little on cardiovascular ED visits. The concentration-response curves suggested non-linear relations between exposures to the three different sizes of PM and respiratory morbidity.Overall, the three size-specific PM demonstrated distinct acute and cumulative effects on the cardiorespiratory diseases. PM₂.₅ and PMc would have significant effects on pneumonia and RTI. Strategies should be considered to further reduce levels of ambient PM₂.₅ and PMc.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library