Use of scintimetry to assess effects of exercise and polysulfated glycosaminoglycan on equine carpal joints with osteochondral defects
1993
Todhunter, R.J. | Altman, N.S. | Kallfelz, F.A. | Nersesian, P. | Lust, G.
Combined blood pool and delayed images produced by use of 99mTc-methylene diphosphonate (99mTcMDP) were evaluated as an objective measurement of the response of equine joints with osteochondral defects to postoperative exercise and intra-articularly administered polysulfated glycosaminoglycan (PSGAG). Osteochondral defects (approx 2.4 X 0.9 cm) were induced arthroscopically in the dorsodistal radial carpal bones of 18 ponies. These ponies were randomized (while balancing for age [range 2 to 15; median, 5.0; mean, 5.1 years]) to 2 treatment groups. Nine ponies were assigned to be exercised, and 9 were stall-rested. Six ponies in each group were administered PSGAG (250 mg) in 1 joint (medicated) and lactated Ringer's solution (LRS) in the contralateral joint. The 3 remaining ponies in each group were administered LRS in both joints (nonmedicated). Medication was given at surgery, then weekly for 4 weeks. The exercise protocol (begun at postoperative day 6 and conducted twice daily) started with 30 minutes walking (approx 0.7 m/s), and, by postoperative month 3, the ponies were being walked for 15 minutes and trotted (approx 1.6 m/s) for 25 minutes. Simultaneous dorsal images of both carpi were made 2 to 3 minutes after IV administration of 99mTcMDP (blood pool image) and 90 to 120 minutes later (delayed image). Scintimetry, in counts per minute per pixel per millicurie, was done before, and at 1, 2, 4, 8, 10, 13, and 17 weeks after surgery, prior to euthanasia. Radionuclide uptake on blood pool images decreased faster than that on delayed images, in which uptake remained high for 17 weeks. This indicated that bone was metabolically active for at least 17 weeks after surgery. Exercise significantly (P < 0.05) decreased uptake on the blood pool images of medicated joints up to 1 month after surgery. Thus, exercise (in the presence of PSGAG) probably had a transient, beneficial effect on soft tissues of the joint. Exercise, without PSGAG, promoted increased bone remodeling, because the highest uptake on delayed images was observed in exercised, nonmedicated ponies up to 3 months after surgery. This was consistent with development of osteoarthritis in these ponies. Medication alone stimulated bone remodeling, and data indicated that an identical effect may take place in contralateral LRS-injected joints, because of systemic circulation of the drug. However, the combination of exercise and medication appeared to moderate the independent effects of each. The combination of exercise and medication in individual joints resulted in notably (P < 0.05) decreased bone remodeling. Medication caused a decrease in bone remodeling in exercised ponies, indicating a protective effect against development of osteoarthritis.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library