Effects of Synthesis Conditions on Characteristics of Ni/Fe Nanoparticles and Their Application for Degradation of Decabrominated Diphenyl Ether
2018
Yi, Yunqiang | Wu, Juan | Wei, Yufen | Fang, Zhanqiang | Gong, Yanyan | Zhao, Dongye
Ni/Fe bimetallic nanoparticles have been widely used as strong reductants to degrade organic pollutants. Synthesis parameters of Ni/Fe nanoparticles can directly affect their characteristics and reactivity. In this study, Ni/Fe nanoparticles were prepared at different synthesis conditions, namely, synthesizing temperature, stirring rate, washing solutions, and preparation methods (post-coated and co-reducted Ni/Fe nanoparticles), and investigated their effectiveness of decabrominated diphenyl ether (BDE209) degradation. The results showed that the successive order of factors affecting the kinetics constant of Ni/Fe nanoparticles for the removal of decabrominated diphenyl ether (BDE209) were preparation methods, washing solutions, stirring rate, and synthesis temperature. It should be noted that the kinetics constants of post-coated Ni/Fe nanoparticles for removal of BDE209 was 0.049 min⁻¹, which was 14 times higher than that of co-reducted Ni/Fe nanoparticles. Moreover, the most remarkable influence on the particle size of Ni/Fe nanoparticles was the stirring rate, others synthesis conditions are mentioned in the following order: washing solutions > preparation methods > synthesis temperature. Interestingly, the effects of synthesis condition on the crystalline structure of Ni/Fe were weak. The results may facilitate more effective application of Ni/Fe nanoparticles for degradation of BDE209.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library