Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors
2020
Hou, Jun | Xu, Xiaoya | Lan, Lin | Miao, Lingzhan | Xu, Yi | You, Guoxiang | Liu, Zhilin
The long-term contamination of soil by microplastics may pose risks that are often still not well understood, and the ecological effects of microplastics are mainly dependent on their environmental behavior in environments. This study used saturated quartz sand as a solid porous medium to study the migration and influencing factors of 40–48 μm polyethylene (PE) particles in saturated porous media. The breakthrough curves at different injection concentrations (0.3, 0.4, 0.5 mg/L), flow rates (1.0, 1.5, 2.0, 2.5 ml/L), porous medium particle sizes (1–2, 2–4 mm), ionic strengths (0, 0.01, 0.05 mol/L) and concentrations of fulvic acid (FA) (0, 5, 10 mg/L) were compared and analyzed. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to more accurately explain relevant transport behaviors. The results showed that the input concentration, flow rate, and particle size can affect the migration of PE particles individually or in combination. As ionic strength increased, the repulsion between microplastics and quartz sand gradually disappeared according to DLVO theory, and their attraction gradually strengthened. As a result, fewer microplastics could penetrate the sand column and reach the water body. With the continuous addition of FA, the repulsive energy between microplastics and quartz sand rose from DLVO theory, and the migration ability of microplastics initially increased before becoming stable because of the effect of straining. In all cases, the migration ability of PE was low (C/C₀ < 0.35), and most PE particles remained in the porous media during the whole experimental periods. This study provides new insights of understanding the migration of microplastics in environment.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library