Characterization of colloid-size copper-based pesticide and its potential ecological implications
2019
Tegenaw, Ayenachew | Sorial, George A. | Sahle-Demessie, Endalkachew | Han, Changseok
The intensive use of Cu-based pesticides in agriculture could have an unintended impact on the ecosystems and human health via different exposure pathways. This paper presents the results of experiments involving colloidal stability, aggregation, and dissolution of Cu₂O commercial pesticide under various environmental conditions in view of ecological implications. The investigated pesticide contains ∼750 g kg⁻¹ Cu (75% weight of product), Cu₂O particles with sizes < 1 μm, and nominal size fraction of Cu₂O nanoparticles. The co-presence of Ca²⁺ (20 mM) and humic acid (HA, 15 mg L⁻¹) significantly modulates (p < 0.001) the colloidal stability and mobility of particles. The dissolution of Cu at pH 5.5 was about 85%, 90%, and 75% weight more than the dissolution of Cu at pH 7.0, pH 8.5, and pH 7.0 and pH 8.5 combined, respectively in all dispersions. However, increasing HA content from 0 to 15 mg L⁻¹ reduced the dissolution of Cu by 56%, 50%, and 40% weight at pH 5.5, 7.0, and 8.5, respectively. Thus, pH below 7.0 is a critical factor to control the dissolution and bioavailability of Cu that may pose ecotoxicity and environmental pollution, whereas pH above 7.0 and the presence of HA attenuate the pH effect. These findings provide insight into how the potential mobility and bioavailability of Cu is modulated by the water chemistry under various environmental scenarios and media.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library