The benefits of biochar: Enhanced cadmium remediation, inhibited precursor production of nitrous oxide and a short-term disturbance on rhizosphere microbial community
2021
Hou, Lijun | Zhang, Liping | Chen, Xiaotian | Li, Xuewen | ZengqiangZhang, | Lin, Yan Bing
Biochar has the potential to remediate heavy metals in agricultural soil and mitigate nitrous oxide (N₂O) emissions; however, the effects of biochar on heavy metal remediation, the soil microbial community and N₂O emissions are not completely understood. In this study, we conducted a pot experiment in which Glycine max L. (soybean) was cultivated in two cadmium (Cd)-contaminated soils (low, 3.14 mg kg⁻¹; high, 10.80 mg kg⁻¹) to investigate the effects of biochar on the bioremediation of Cd, N₂O emissions and the rhizosphere microbial community structure. The bioaccumulation of Cd in the plant shoots and roots increased with all biochar addition rates (0%, 1%, 5% and 10%); unexpectedly, the translocation capacity of Cd to the edible parts of the plant significantly decreased to 0.58 mg kg⁻¹, which was close to the edible threshold (0.4 mg kg⁻¹). The abundance and activities of functional marker genes of microbial nitrification (amoA) and denitrification (nirK, nirS and nosZ) were quantified with quantitative PCR, and we found that biochar addition reduced the precursor production of rhizoshpere N₂O by inhibiting the transcription of the nirK gene. In addition, the nitrogenase activity during anthesis (S) was significantly (P < 0.05) increased with 1% (v/v) biochar addition. Noticeably, biochar addition only changed the microbial community structure in the very first stage before eventually stabilize. This study highlighted that biochar has the potential ability to maintain the quality of agricultural crops, remediate Cd-contaminated soils and may help reduce N₂O emissions without disturbing the microbial community.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library