Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater snails: Implications for the environmental fate of graphene in aquatic systems
2018
Su, Yu | Huang, Ji | Lu, Fenxiao | Tong, Xin | Niu, Junfeng | Mao, Liang
Understanding of the interaction of graphene with natural polysaccharides (e.g., alginate) is crucial to elucidate its environmental fate. We investigated the impact of alginate on the agglomeration and stability of ¹⁴C-labeled few-layer graphene (FLG) in varying concentrations of monovalent (NaCl) and divalent (CaCl₂) electrolytes. Enhanced agglomeration occurred at high CaCl₂ concentrations (≥5 mM) due to the alginate gel networks formation in the presence of Ca²⁺. FLG enmeshed within extended alginate gel networks was observed under transmission electron microscope and atomic force microscope. However, background Na⁺ competition for binding sites with Ca²⁺ at the alginate surfaces shielded the gelation of alginate. FLG was readily dispersed by alginate under environmentally relevant ionic strength conditions (i.e., <200 mM Na⁺ and <5 mM Ca²⁺). In comparison with the bare FLG, the slow sedimentation of the alginate-stabilized FLG (158 μg/L) caused continuous exposure of this nanomaterial to freshwater snails, which ingested 1.9 times more FLG through filter-feeding within 72 h. Moreover, surface modification of FLG by alginate significantly increased the whole-body and intestinal levels of FLG, but reduced the internalization of FLG to the intestinal epithelial cells. These findings indicate that alginate will act as a stabilizing agent controlling the transport of FLG in aqueous systems. This study also provides the first evidence that interaction of graphene with natural polysaccharides affected the uptake of FLG in the snails, which may alter the fate of FLG in aquatic environments.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library