Do corn-soybean rotations enhance decomposition of soil organic matter?
2019
Hall, Steven J. | Russell, Ann E. | Moore, A’lece R.
AIMS: Corn and soybean crops are often grown in rotation, requiring lower nitrogen (N) inputs than continuous corn. However, soil organic carbon (C) may be declining in corn-soybean systems despite sustained residue inputs. We asked whether corn-soybean rotations increase decomposition of litter and soil C as compared with continuous corn. METHODS: We incubated soils from a long-term field experiment including continuous corn and both phases of the corn-soybean rotation. Soils were amended with corn litter, soybean litter, or no litter. We measured natural abundance C stable isotopes (δ¹³C values) in respiration and microbial biomass to partition C sources. RESULTS: Addition of soybean litter increased microbial biomass while corn did not. However, corn litter addition consistently increased (i.e., primed) soil C decomposition while soybean litter did not. Soils most recently planted to corn following soybeans had the greatest soil C decomposition and N mineralization irrespective of litter addition, and they decomposed corn litter faster and had a faster priming response than the other treatments. CONCLUSIONS: Our data support the hypothesis that alternating inputs of N-rich soybean litter and relatively N-poor corn litter could enhance litter and SOC decomposition by driving microbial growth following the soybean phase and stimulating priming following the corn phase. Increased decomposition and N mineralization from litter and SOC in corn-soybean rotations may contribute to the soybean N credit but could also contribute to longer-term soil C and N declines, consistent with field data.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library