Screening of Microorganisms for Biodegradation of Simazine Pollution (Obsolete Pesticide Azotop 50 WP)
2011
Błaszak, Magdalena | Pełech, Robert | Graczyk, Paulina
The capability of environmental microorganisms to biodegrade simazine—an active substance of 2-chloro-s-triazine herbicides (pesticide waste since 2007)—was assessed. An enormous metabolic potential of microorganisms impels to explore the possibilities of using them as an alternative way for thermal and chemical methods of utilization. First, the biotope rich in microorganisms resistant to simazine was examined. Only the higher dose of simazine (100Â mg/l) had an actual influence on quantity of bacteria and environmental fungi incubated on substrate with simazine. Most simazine-resistant bacteria populated activated sludge and biohumus (vermicompost); the biggest strain of resistant fungi was found in floral soil and risosphere soil of maize. Compost and biohumus were the sources of microorganisms which biodegraded simazine, though either of them was the dominant considering the quantity of simazine-resistant microorganisms. In both cases of periodic culture (microorganisms from biohumus and compost), nearly 100% of simazine (50Â mg/l) was degraded (within 8Â days). After the repeated enrichment culture with simazine, the rate of its degradation highly accelerated, and just after 24Â h, the significant decrease of simazine (20% in compost and 80% in biohumus) was noted. Although a dozen attempts of isolating various strains responsible for biodegradation of simazine from compost and biohumus were performed, only the strain identified as Arthrobacter urefaciens (NC) was obtained, and it biodegraded simazine with almost 100% efficiency (within 4Â days).
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library