Sorption Behavior of Arsenate by Mg-Bearing Minerals at Hyperalkaline Condition: Implications for Oxyanions Sequestration During the Use and Disposal of Alkaline Wastes
2012
Opiso, Einstine | Asai, Atsushi | Sato, Tsutomu | Yoneda, Tetsuro | Liu, Xiaoji
The utilization and disposal of alkaline waste materials such as slag and coal fly ash as cement aggregates and raw materials in cement manufacturing can pose environmental and health hazards because these waste materials usually contain elevated concentration of toxic elements. This study examined the possibility of controlling the pore water chemistry of these waste materials in order to induce the secondary mineral formation of Mg-bearing minerals as major sorbing solids for oxyanions during the utilization and disposal of alkaline wastes. The formation of Mg-bearing minerals was examined at ambient temperature and alkaline pH conditions in the Mg–Si–Al system. The interaction of Mg-bearing minerals with oxyanions using arsenate as an analog was examined during and after mineral formation. The results revealed that the generated Mg-bearing mineral phases were smectite and brucite in Mg–Si system and hydrotalcite and serpentine in Mg–Si–Al system. Moreover, hydrotalcite, serpentine, brucite, and smectite phases formed under low Si ratio showed high sorption capacity for arsenate, but only high Al content hydrotalcite and serpentine showed substantial irreversible fraction of sorbed arsenate. Hence, the generation of these kinds of hydrotalcite and serpentine phases as scavengers for oxyanions must be considered during the utilization and disposal of alkaline wastes.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library