Microbially Mediated Redox Cycling at the Oxic-Anoxic Boundary in Sediments: Comparison of Animal and Plants Habitats
2006
Hines, Mark E
Microorganisms are responsible for the bulk of transformations that occur in surficial sediments. They are most active at redox boundaries where they can benefit from access to various oxidants and reductants generated during redox cycling events. To illustrate the dynamics of microbially mediated processes, especially those involving sulfur and metal cycles, processes were compared in habitats either bioturbated by a capitellid worm or inhabited by a salt marsh grass. The presence of macrofauna and macroflora greatly altered the three-dimensional array of redox gradients in sediments, but the type and form of reductants and oxidants provided varied greatly; clastic sedimentary infauna subducted solid phase organic material and iron oxides, whereas plant roots released dissolved organic matter and oxygen. These differences resulted in a bioturbated system that exhibited a rapid sulfur cycle (residence time of minutes), but a slower iron cycle (days), whereas vegetation caused a slow sulfur cycle and rapid iron cycle. Alteration of sediments by higher life forms also greatly affected the composition and relative abundances of sedimentary bacteria, even on short time scales. Although redox cycling at interfaces can be somewhat predictable, variations in response to biological and physical perturbations demonstrated wide differences in the dynamics of redox-mediated processes.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library