Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry (Prunus avium L.)
2004
Wunsch, A. | Hormaza, J.I.
Gametophytic self-incompatibility (GSI) in sweet cherry is determined by a locus S with multiple alleles. In the style, the S-locus codifies for an allele-specific ribonuclease (S-RNase) that is involved in the rejection of pollen that carries the same S allele. In this work we report the cloning and genomic DNA sequence analysis including the 5" flanking regions of four S-RNases of sweet cherry (Prunus avium L., Rosaceae). DNA from the cultivars Ferrovia, Pico Colorado, Taleguera Brillante and Vittoria was amplified through PCR using primers designed in the conserved sequences of sweet cherry S-RNases. Two alleles were amplified for each cultivar and three of them correspond to three new S-alleles named S23 , S24 and S25 present in 'Pico Colorado', 'Vittoria' and 'Taleguera Brillante' respectively. To confirm the identity of the amplified fragments, the genomic DNA of these three putative S-RNases and the allele S12 amplified in the cultivar Ferrovia were cloned and sequenced. The nucleotide and deduced amino-acid sequences obtained contained the structural features of rosaceous S-RNases. The isolation of the 5"-flanking sequences of these four S-RNases revealed a conserved putative TATA box and high similarity among them downstream from that sequence. However, similarity was low compared with the 5"-flanking regions of S-RNases from the Maloideae. S6- and S24-RNase sequences are highly similar, and most amino-acid substitutions among these two RNases occur outside the rosaceous hypervariable region (RHV), but within another highly variable region. The confirmation of the different specificity of these two S-RNases would help elucidate which regions of the S-RNase sequences play a role in S-pollen specific recognition.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library