Experimental study of microorganism-induced calcium carbonate precipitation to solidify coal gangue as backfill materials: mechanical properties and microstructure
2022
Wang, Zhaojun | Zhang, Jixiong | Li, Meng | Guo, Shijie | Zhang, Jiaqi | Zhu, Gaolei
The treatment of coal gangue solid waste and microbially induced calcium carbonate precipitation (MICP) consolidate technology is a focus of research at home and abroad. MICP technology was used to solidify and cement coal gangue particles and endows them with a certain strength. The process does not use the traditional cementitious material (Portland cement) and is eco-friendly and pollution-free. The mechanical properties including unconfined compressive strength, CaCO₃ content, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and infrared spectroscopy (FTIR) were used for macroscopic and microscopic analyses. The results show that the average strength of CG-based bio-mineralized backfill materials reaches 1.55 MPa and the maximum strength is 2.17 MPa, suggesting the potential for its use as an underground fill. Compared with unmineralized gangue, the CaCO₃ crystal content in CG-based mineralized material is increased by 8.75% on average, and the maximum content is 13.34%. In the process of bacterial liquid perfusion, there is uneven distribution of bacteria in the material, which results in fewer CaCO₃ crystals being locally generated in the mineralized material and affects the overall compressive strength of gangue columns. Moreover, the greater the amount of calcium carbonate, the larger the strength of the mineralized material. SEM analysis results indicate that the gaps between gangue particles are filled with CaCO₃ crystals, and the calcium carbonate crystals are mostly polyhedral, showing stacked growth and contain a small number of spherical crystals that exist alone. The results of FTIR and EDS analysis show that the CaCO₃ crystals in the mineralized material are mainly in the form of calcite, followed by a small amount of vaterite. Comprehensive analysis demonstrates that the preparation of CG-based bio-mineralized backfilling materials is successful, and this experiment provides new ideas and methods for the treatment of solid waste such as coal gangue and building material waste.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library