Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice
2020
Wu, Yun | Yang, Lei | Gong, Hua | Dang, Fei | Zhou, Dong-Mei
Interaction between silver nanoparticles (AgNPs) and iron plaque, which forms at the root surface of wetland plants under waterlogging conditions, is a critical process that controls the bioavailability of AgNPs. In this study, we comparatively evaluated how and to what extent iron plaque affected silver uptake sourced from metallic (Ag⁰NPs) and sulfidized (Ag₂S-NPs) silver nanoparticles under hydroponic conditions. After the formation of iron plaque at the root surface upon exposure to Fe²⁺ at 0–100 μg mL⁻¹, rice (Oryza sativa L.) seedlings were transferred to AgNP suspensions. Silver uptake depended on the amount of iron plaque and AgNP species (Ag⁰NPs vs. Ag₂S-NPs): Ag₂S-NP exposure had lower or comparable Ag uptake to that of Ag⁰NP exposure at low levels of Fe²⁺ (0–80 μg mL⁻¹), but significantly higher Ag uptake at 100 μg Fe²⁺ mL⁻¹. Such contrasting effects of iron plaque on the bioavailability of Ag⁰NPs and Ag₂S-NPs were attributed to their influences on AgNP dissolution. However, the translocation factors (TFs) and particle size distribution of NPs in planta (as determined by single-particle inductively coupled plasma-mass spectrometry analysis) were not affected by the amount of iron plaque. These results reveal contrasting effects of iron plaque on the bioavailability of Ag⁰NPs and Ag₂S-NPs, and raise concerns about the exposure of wetland plants to Ag₂S-NPs in Fe-rich environments, where high Fe levels may facilitate Ag₂S-NP bioavailability.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library