Metabolism deficiency and oxidative stress induced by plastic particles in the rotifer Brachionus plicatilis: Common and distinct phenotypic and transcriptomic responses to nano- and microplastics
2022
Shin, Heesang | Jeong, Chang-Bum
Growing experimental data on the adverse effects of microplastic pollution on marine biota indicate that the size of the plastic particles is a key determinant of toxicity. Here, we investigated size-dependent toxicity at different levels of biological organizations in the marine rotifer Brachionus plicatilis, from bioaccumulation as an initiating event to adverse in-vivo outcomes, with ecotoxicogenomic approach to elucidate the size-dependent toxicity of microplastics. Nanoplastics strongly retarded the reproduction and population growth of B. plicatilis, while microplastics were associated with moderate effects. This size dependency could be attributed to the selective induction of oxidative stress by nanoplastic exposure in addition to a metabolic deficiency, which was a common toxicity mechanism with both nano- and microplastic exposure as predicted by transcriptomic analysis. Our findings suggested that metabolic deficiency is a shared toxicity mechanism of nano- and microplastics, while oxidative stress might be responsible for the stronger toxicity of nanoplastics.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library