FAO AGRIS - International System for Agricultural Science and Technology

LidarCSNet: A Deep Convolutional Compressive Sensing Reconstruction Framework for 3D Airborne Lidar Point Cloud

2021

Shinde, Rajat C. | Durbha, Surya S. | Potnis, Abhishek V.


Bibliographic information
ISPRS journal of photogrammetry and remote sensing
Volume 180 Pagination 313 - 334 ISSN 0924-2716
Publisher
Elsevier B.V.
Other Subjects
3d airborne lidar point cloud; Canopy height; Compressive sensing; Lidar for forests; Convolutional sparse coding; Signal-to-noise ratio; Deep learning for point cloud classification; Ensemble deep learning; Deep network-based optimization
Language
English
Type
Journal Article; Text

2024-02-28
MODS
Data Provider
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]