The preparation of bifunctional electrospun air filtration membranes by introducing attapulgite for the efficient capturing of ultrafine PMs and hazardous heavy metal ions
2019
Wang, Bin | Sun, Zhiming | Sun, Qing | Wang, Jie | Du, Zongxi | Li, Congju | Li, Xiuyan
The comprehensive sources of particulate matter (PM) require air purification materials to possess both high filtration efficiencies and low air resistances in an effort to provide healthcare. However, the assembly of multiple-layered filters with different functions leads to high pressure drop and high operating cost. Therefore, a multifunctional air filter that can provide excellent air filtration capacity and healthcare is highly desired. Here, a novel bifunctional polyacrylonitrile/attapulgite hierarchical-structured filter with low air resistance and high adsorption capacity was designed and fabricated by embedding attapulgite nanorods during a facile electrospinning process. The hierarchical polyacrylonitrile/attapulgite membranes showed only a ∼64 Pa resistance for 0.1 μm PM. Another benefit of using the attapulgite nanorods is an adsorption effect for hazardous heavy metal ions that accompany airborne ultrafine PMs. Thereby this hierarchical membrane simultaneously exhibits an enhanced filtration performance and hazardous protection ability. Furthermore, due to the electret effect of the attapulgite nanorods, the surface potential of the membrane remains at above 2.2 kV after 600 min of continuous use, which could improve the air filtration efficiency and ensure the long-term service life of the filters. This work may provide a new approach for the design and development of multifunctional air filters for simultaneously capturing ultrafine PMs and any other accompanying hazardous chemicals.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library