Role of the proteome in providing phenotypic stability in control and ectomycorrhizal poplar plants exposed to chronic mild Pb stress
2020
Szuba, Agnieszka | Marczak, Łukasz | Kozłowski, Rafał
Lead is a dangerous pollutant that accumulates in plant tissues and causes serious damage to plant cell macromolecules. However, plants have evolved numerous tolerance mechanisms, including ectomycorrhizae, to maintain cellular Pb²⁺ at the lowest possible level. When those mechanisms are successful, Pb-exposed plants should exhibit no negative phenotypic changes. However, actual molecular-level plant adjustments at Pb concentrations below the toxicity threshold are largely unknown, similar to the molecular effects of protective ectomycorrhizal root colonization. In this study, we (1) determined the molecular adjustments in plants exposed to Pb but without visible Pb stress symptoms and (2) examined ectomycorrhizal root colonization (the role of fungal biofilters) with respect to molecular-level Pb perception by plant root cells. Biochemical, microscopic, proteomic and metabolomic studies were performed to determine the molecular status of Populus × canescens microcuttings grown in agar medium enriched with 0.75 mM Pb(NO₃)₂. Noninoculated and inoculated with Paxillus involutus poplars were analyzed in two independent comparisons of the corresponding control and Pb treatments. After six weeks of growth, Pb caused no negative phenotypic effects. No Pb-exposed poplar showed impaired growth or decreased leaf pigmentation. Proteomic signals of intensified Pb sequestration in the plant cell wall and vacuoles, cytoskeleton modifications, H⁺-ATPase-14-3-3 interactions, and stabilization of protein turnover in chronically Pb-exposed plants co-occurred with high metabolomic stability. There were no differentially abundant root primary metabolites; only a few differentially abundant root secondary metabolites and no Pb-triggered ROS burst were observed. Our results strongly suggest that proteome adjustments targeting Pb sequestration and ROS scavenging, which are considerably similar but less intensive in ectomycorrhizal poplars than in control poplars due to the P. involutus biofilter (as confirmed in a mineral study), were responsible for the metabolomic and phenotypic stability of poplars exposed to chronic mild Pb stress.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library