A mutation in tomato aspermy cucumovirus that abolishes cell-to-cell movement is maintained to high levels in the viral RNA population by complementation
1997
Moreno, I.M. | Malpica, J.M. | Rodriguez-Cerezo, E. | Garcia-Arenal, F.
The nucleotide substitution C leads to A at nucleotide 100 of tomato aspermy cucumovirus (TAV) strain V (V-TAV) RNA segment 3 (RNA3) introduces an ocher stop at the fourth codon of the movement protein open reading frame. Experiments with RNA transcripts from full-length clones showed that this mutation abolished cell-to-cell movement and, thus, infectivity in planta. Heterogeneity analyses on stock V-TAV virion RNA showed that an A at position 100 was present in the molecular population of RNA3 at a frequency of 0.76 and that a C at this position was present at a frequency of 0.24. This result indicates that a fraction of RNA3 molecules complements cell-to-cell movement of movement-defective molecules. It was shown that the mutation C leads to A conferred enhanced RNA replication of the defective mutant in tobacco protoplasts. The effect of the mutation on replication was dependent on sequence context, since the same mutation did not affect the replication efficiency in the related TAV strain 1 RNA3. Competition experiments in tobacco protoplasts were done to estimate the fitness during a cell invasion cycle of the movement-defective mutant relative to the wild type (wt). From these data, a lower limit to the degree of complementation of movement-defective molecules by movement-competent ones could be estimated as 0.13. This estimate shows that complementation may play an important role in the determination of genetic structure in RNA genome populations. A further effect of the enhanced replication of the movement-defective mutant was the efficient competition with the wt for the initiation of infection foci in planta.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library