Biochar-mediated transformation of titanium dioxide nanoparticles concerning TiO2NPs-biochar interactions, plant traits and tissue accumulation to cell translocation
2021
Abbas, Qumber | Yousaf, Balal | Mujtaba Munir, Mehr Ahmed | Cheema, Ayesha Imtiyaz | Hucheina, Imarāna | Rinklebe, Jörg
Titanium dioxide nanoparticles (TiO₂NPs) application in variety of commercial products would likely release these NPs into the environment. The interaction of TiO₂NPs with terrestrial plants upon uptake can disturb plants functional traits and can also transfer to the food chain members. In this study, we investigated the impact of TiO₂NPs on wheat (Triticum aestivum L.) plants functional traits, primary macronutrients assimilation, and change in the profile of bio-macromolecule. Moreover, the mechanism of biochar-TiO₂NPs interaction, immobilization, and tissue accumulation to cell translocation of NPs in plants was also explored. The results indicated that the contents of Ti in wheat tissues was reduced about 3-fold and the Ti transfer rate (per day) was reduced about 2 fold at the 1000 mg L⁻¹ exposure level of TiO₂NPs in biochar amended exposure medium. Transmission electron microscopy (TEM) with elemental mapping confirmed that Ti concentrated in plant tissues in nano-form. The interactive effect of TiO₂NPs + biochar amendment on photosynthesis related and gas exchange traits was observed at relatively low TiO₂NPs exposure level (200 mg L⁻¹), which induced the positive impact on wheat plants proliferation. TiO₂NPs alone exposure to wheat also modified the plant’s bio-macromolecules profile with the reduction in the assimilation of primary macronutrients, which could affect the food crop nutritional value and quality. X-ray photoelectron spectroscopy (XPS) chemical analysis of biochar + TiO₂NPs showed an additional peak, which indicated the binding interaction of NPs with biochar. Moreover, Fourier-transform infrared (FTIR) spectroscopy confirmed that the biochar carboxyl group is the main functionality involved in the bonding process with TiO₂NPs. These findings will help for a mechanistic understanding of the role of biochar in the reduction of NPs bioavailability to primary producers of the terrestrial environment.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library