Elimination of Selected Emerging Contaminants by the Combination of Membrane Filtration and Chemical Oxidation Processes
2015
Acero, Juan L. | Benitez, F Javier | Real, Francisco J. | Rodriguez, Elena
The elimination of five selected emerging contaminants (1-H-benzotriazole, N,N-diethyl-m-toluamide (DEET), chlorophene, 3-methylindole, and nortriptyline HCl) dissolved in different water matrices (surface water and secondary effluents) was carried out by sequential membrane filtration and chemical oxidation processes. First, a membrane filtration (ultrafiltration (UF) or nanofiltration(NF)) pre-treatment was conducted, and both permeate and retentate were afterwards treated by chemical oxidation, using ozone or chlorine. The application of UF and especially of NF provided a large volume of permeate, whose quality can be improved by a chemical treatment to completely remove residual contaminants except 1-H-benzotriazole. Chlorination and especially ozonation have demonstrated to be effective for the reduction of emerging contaminants in the concentrated stream, thus generating an effluent that might be recycled to the activated sludge treatment in the wastewater treatment plants (WWTP). In a second group of experiments, a chemical oxidation pre-treatment (by using ozone, chlorine, O₃/H₂O₂, ultraviolet (UV) radiation, or UV/H₂O₂) was applied followed by a nanofiltration process. Results of removals and rejection coefficients for the emerging contaminants showed that the chemical pre-treatment exerted a positive influence on the subsequent NF process, not only in terms of ECs removal but also of dissolved organic carbon content (DOC) reduction. While global removals higher than 97 % were reached for DEET, chlorophene, 3-methylindole, and nortriptyline HCl, lower values were obtained for 1-H-benzotriazole, especially for chlorine pre-treatment and in those water matrices with high content of natural organic matter. Therefore, both sequential treatments are promising to remove the selected micropollutants while reducing the chlorine doses needed to achieve final water disinfection.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library