Long-term variations of C1–C5 alkyl nitrates and their sources in Hong Kong
2021
Zeng, Lewei | Guo, Hai | Lyu, Xiaopu | Zhou, Beining | Ling, Zhenhao | Simpson, Isobel J. | Meinardi, Simone | Barletta, Barbara | Blake, Donald R.
Investigating the long-term trends of alkyl nitrates (RONO₂) is of great importance for evaluating the variations of photochemical pollution. Mixing ratios of C₁–C₅ RONO₂ were measured in autumn Hong Kong from 2002 to 2016, and the average level of 2-butyl nitrate (2-BuONO₂) always ranked first. The C₁–C₄ RONO₂ all showed increasing trends (p < 0.05), and 2-BuONO₂ had the largest increase rate. The enhancement in C₃ RONO₂ was partially related to elevated propane, and dramatic decreases (p < 0.05) in both nitrogen monoxide (NO) and nitrogen dioxide (NO₂) also led to the increased RONO₂ formation. In addition, an increase of hydroxyl (OH) and hydroperoxyl (HO₂) radicals (p < 0.05) suggested enhanced atmospheric oxidative capacity, further resulting in the increases of RONO₂. Source apportionment of C₁–C₄ RONO₂ specified three typical sources of RONO₂, including biomass burning emission, oceanic emission, and secondary formation, of which secondary formation was the largest contributor to ambient RONO₂ levels. Mixing ratios of total RONO₂ from each source were quantified and their temporal variations were investigated. Elevated RONO₂ from secondary formation and biomass burning emission were two likely causes of increased ambient RONO₂. By looking into the spatial distributions of C₁–C₅ RONO₂, regional transport from the Pearl River Delta (PRD) was inferred to build up RONO₂ levels in Hong Kong, especially in the northwestern part. In addition, more serious RONO₂ pollution was found in western PRD region. This study helps build a comprehensive understanding of RONO₂ pollution in Hong Kong and even the entire PRD.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library