Quantifying the effects of topographic aspect on water content and temperature in fine surface fuel
2015
Nyman, Petter | Metzen, Daniel | Noske, Philip J. | Lane, Patrick N. J. | Sheridan, Gary J.
This study quantifies the effects of topographic aspect on surface fine fuel moisture content (FFMC) in order to better represent landscape-scale variability in fire risk. Surface FFMC in a eucalypt forest was measured from December to May (180 days) on different aspects using a novel method for in situ monitoring of moisture content (GWClit) and temperature (Tlit) in litter. Daily mean GWClit varied systematically with aspect. North (0.07≤GWClit≤1.30kg kg-1) and south (0.11≤GWClit≤1.83kg kg-1) aspects were driest and wettest respectively, whereas east and west were somewhere in between. On the warmest day (38.9°C), the maximum Tlit on north (43.7°C) and south (29.8°C) aspects differed by 13.9°C. Aspect-driven variation in Tlit and GWClit is exacerbated by vegetation, which increases markedly in density with decreasing solar exposure. GWClit was below fibre saturation point (<0.35kg kg-1) on 49 and 128 days on south and north aspects, respectively, demonstrating that fuels beds are often in different stages of drying and therefore subject to different hydrological processes depending on landscape position. This terrain-related variability in moisture dynamics strongly affects the spatial connectivity of fuels, and may be more important for predicting landscape-scale burn outcomes than sub-daily fluctuations at a point.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library