Effects of concentrated application of soil conditioners on soil–air permeability and absorption of nitrogen by young peach trees
2018
Xiao, Yuansong | Peng, Yan | Peng, Futian | Zhang, Yafei | Yu, Wen | Sun, Maoxiang | Gao, Xiaolan
To study the effects of concentrated application of two soil conditioners, two-year-old peach trees (Prunus persica L.‘Chunmei’) were selected to test the soil air permeability, ¹⁵N absorption and the growth of trees. The experiment comprised three treatments involved concentrated applying either polyacrylamide (treatment I) or Agri-SC (a proprietary soil conditioner, treatment II) at the bottom of each pit or neither of the two (treatment III). And then the whole pit was back-filled with soil. Neither digging a hole nor use of soil conditioners as the control (CK). The results showed that volumetric oxygen content in gases in 5–10 cm soil layer upon concentrated application layer was significantly higher in treatments I and II than that in CK. Soil volumetric water content upon concentrated application layer was higher in treatments I and II than that in CK. Compared with CK, no matter root activity, leaf area, leaf chlorophyll content, or leaf net photosynthesis rate in treatments I and II increased in August and October, which promoted the growth of new shoots and the stem. Compared with CK, the leaf superoxide dismutase activity increased 31.24%, 22.66% and 4.74%, Guaiacol peroxidase increased 21.88%, 13.25% and 3.39%, Catalase increased 11.80%, 7.92% and 1.24% respectively in treatments I, II and III in October. As a result, values of the total roots surface area, total root volume, number of root tips, dry matter accumulation, and organ nitrogen content were markedly higher in treatments I and II than that in CK. And the ¹⁵N utilization rate significantly increased 24.22% and 10.40% respectively in treatments I and II. The result suggested that concentrated application of soil conditioners formed a rhizosphere water storage and breathable layer that not only stores moisture but is also permeable to air. That, in turn, promotes plant growth, increases the nitrogen use efficiency.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library