Reveal the metal handling and resistance of earthworm Metaphire californica with different exposure history through toxicokinetic modeling
2021
Huang, Caide | Ge, Yan | Shen, Zhiqiang | Wang, Kun | Yue, Shizhong | Qiao, Yuhui
Toxicokinetic (TK) model provides a new approach to mechanistically elucidate the natural variation of metal handling strategy by adaptive and sensitive earthworm populations. Here, TK model was applied to explore the metal handling and resistance strategy of wild Metaphire californica with different historical exposure history through a 12-day re-exposure and another 12-day elimination incubation. M. californica populations showed different kinetic strategies for non-essential metals (Cd and Pb) and essential metals (Zn and Cu), which were closely related to their exposure history. M. californica from the most serious Cd-contaminated soil showed the fastest kinetic rates of both Cd uptake (K₁ = 0.78 gₛₒᵢₗ/gwₒᵣₘ/day) and elimination (K₂ = 0.23 day⁻¹), and also had the lowest Cd half-life (t₁/₂ = 3.01 day), which demonstrated the potential Cd-resistance of wild M. californica from Cd-contaminated soils. Besides, the comparative experiment showed totally different metal kinetics of laboratory Eisenia fetida from field M. californica, suggesting the impacts of distinct exposure history and species-specifical sensitivities. These findings provide a novel approach to identify and quantify resistance using TK model and also imply the risk of overlooking existing exposure background and interspecies extrapolation in eco-toxicological studies and risk assessments.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library