Sorption of As(V) by Aluminum-Modified Crop Straw-Derived Biochars
2013
Qian, Wei | Zhao, An-zhen | Xu, Ren-kou
Biochars derived from the straws of rice, soybean, and peanut were prepared and modified with aluminum [Al(III)]. These modifications shifted zeta potential-pH curves of the biochars in a positive-value direction and changed surface charge of biochars from negative to positive under acidic conditions. The isoelectric points for 0.6 M Al(III)-modified rice, soybean, and peanut straw biochars were 8.0, 7.8, and 7.5, respectively. Electrostatic attraction of the positively charged surfaces on Al(III)-modified biochars to arsenate [As(V)] enhanced its sorption. The sorption of As(V) by these Al(III)-modified biochars was investigated in batch experiments. Al(III)-modified biochars had greater sorption capacity under acidic conditions compared with corresponding unmodified biochars. While unmodified biochars sorbed negligible amounts of As(V), their Al(III)-modified forms sorbed 445-667 mmol kg-1 at pH 5.0, which were predicted by the Langmuir equation. Modifications with 0.3 M Al3+ improved sorption capacity of As(V) on soybean straw biochar to 445 mmol kg-1, which was further increased by 50 % after modification with 0.6 M Al3+. These As(V) sorption capacities of biochars modified with 0.6 M Al3+ were larger than those of Fe/Al oxides determined at the same pH, which were < 500 mmol kg-1. Thus, biochars modified with 0.6 M Al3+ could substitute Fe/Al oxides used for water purification. However, the sorption of As(V) by the Al(III)-modified biochars increased with decreasing suspension pH. Thus, As(V) removal by Al(III)-modified biochars is suggested to be conducted under acidic conditions, but at pH > 4.0. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library