Multigenerational exposure to TiO2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling
2020
Hu, Zhao | Hou, Jie | Zhu, Ya | Lin, Daohui
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO₂ NPs (nTiO₂) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO₂, and the toxicities of three nTiO₂ forms were largely comparable. The nTiO₂ exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO₂ exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO₂, and add new knowledge on the long-term impact of soil nTiO₂ contamination.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library