Water–Rock Interaction and Geochemical Processes in Surface Waters Influenced by Tailings Impoundments: Impact and Threats to the Ecosystems and Human Health in Rural Communities (Panasqueira Mine, Central Portugal)
2015
Candeias, Carla | Ávila, Paula Freire | da Silva, Eduardo Ferreira | Ferreira, Adelaide | Durães, Nuno | Teixeira, João Paulo
The present and past mining activity left several abandoned tailings and dams in the Panasqueira tin–tungsten mining area. Seasonal water samples and stream sediments were collected during two different periods (rainy and dry seasons) and analyzed for a wide range of major and trace elements, in order to define the present hydrochemical situation. Rain waters interact with the altered sulfides stored in the tailings which generate runoff waters with high metal concentrations. The waste material derived from the exploitation enhanced acidification and metal-releasing processes, due to the increase in the specific surface, which favors the oxidation of sulfide minerals. Acid drainage and high metal(loid)s (Cd, Fe, Mn, Zn, Cu, As) concentrations in solution were observed in waters leaching the Panasqueira tailing deposits. In dry season, generally the acidic waters, enriched in metals, evaporate progressively depositing sulfate efflorescences characteristic of acidic environments. The elements distribution in precipitated minerals helps in the interpretation of aqueous geochemical data. Aqueous concentrations may be attenuated by goethite, gibbsite, and/or ferrihydrite precipitation in the oxidation zone through adsorption processes. The use of these waters for human consumption and for irrigation represents a threat to humans as they have a potential carcinogenic risk, especially due to the As concentrations. The acid water precipitation is present on the stream sediments, with concentrations exceeding the toxicity limits. Stream sediments are good receptors of metals and metalloids transported by waters. The enrichment factor values, of heavy metal(loid)s from Casinhas stream and Zêzere river sediments, are extremely high in Ag, As, Cd, and Cu revealing enrichments for these potential toxic elements. Igₑₒvalues shows that samples are strongly to very strongly polluted for Ag, As, Bi, Cd, and Cu. According to the consensus-based SQGs, 80 % of the samples were classified at the level of great concern and adverse biological effects are to be expected frequently in this area.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library