Iron-doped hydroxyapatite for the simultaneous remediation of lead-, cadmium- and arsenic-co-contaminated soil
2022
Yang, Zhihui | Gong, Hangyuan | He, Fangshu | Repo, Eveliina | Yang, Weichun | Liao, Qi | Zhao, Feiping
Since lead, cadmium and arsenic have completely opposite chemical behaviors, it is very difficult to stabilize all these three heavy metals simultaneously. Herein, a novel iron-doped hydroxyapatite composite (Fe-HAP) was developed via an ultrasonic-assisted microwave hydrothermal method for the simultaneous remediation of lead-, cadmium-, and arsenic-co-contaminated soil in Hunan Province, South China. Using DTPA/sodium bicarbonate extractant to extract bioavailable Pb, Cd and As in soil after Fe-HAP remediation for 60 days, the immobilization efficiencies were 79.77%, 51.3% and 37.5% for Pb, Cd and As, respectively. The soil extractable and exchangeable fractions of Pb, Cd and As decreased significantly. In batch experiments, the adsorption kinetics of Pb, Cd and As on Fe-HAP were well described by pseudo-second-order models, indicating that the adsorption is controlled by chemisorption. In the Langmuir adsorption isotherm, the maximum adsorption capacities of Cd²⁺ and As(V) were 476.2 mg g⁻¹ and 195.69 mg g⁻¹, respectively, while Pb²⁺ fit the Freundlich model better. The XRD, SEM and XPS analyses indicated that Fe-HAP formed stable minerals of Pb₅(PO₄)₃OH, Cd₃(PO₄)₂·4H₂O, Cd(OH)₂ and Fe₃(AsO₄)₂·6H₂O with Pb, Cd and As. Overall, its facile and efficient immobilization performance indicate that Fe-HAP has potential for practical applications in integrative remediation of Pb-, Cd-, and As- co-contaminated soil.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library