Contributions of local pollution emissions to particle bioreactivity in downwind cities in China during Asian dust periods
2019
Ho, Kin-Fai | Wu, Kuan-Che | Niu, Xinyi | Wu, Yunfei | Zhu, Chong-Shu | Wu, Feng | Cao, Jun-Ji | Shen, Zhen-Xing | Hsiao, Ta-Chih | Chuang, Kai-Jen | Chuang, Hsiao-Chi
This study investigated the effects of pollution emissions on the bioreactivity of PM2.5 during Asian dust periods. PM2.5 during the sampling period were 104.2 and 85.7 μg m−3 in Xi'an and Beijing, respectively, whereas PM2.5 which originated from the Tengger Desert was collected (dust background). Pollution conditions were classified as non-dust days, pollution episode (PE), dust storm (DS)-1, and DS-2 periods. We observed a significant decrease in cell viability and an increase in LDH that occurred in A549 cells after exposure to PM2.5 during a PE and DS-1 in Xi'an and Beijing compared to Tengger Desert PM2.5. Positive matrix factorization was used to identify pollution emission sources. PM2.5 from biomass and industrial sources contributed to alterations in cell viability and LDH in Xi'an, whereas vehicle emissions contributed to LDH in Beijing. OC, EC, Cl−, K+, Mg2+, Ca, Ti, Mn, Fe, Zn, and Pb were correlated with cell viability and LDH for industrial emissions in Xi'an during DS. OC, EC, SO42−, S, Ti, Mn, and Fe were correlated with LDH for vehicle emissions in Beijing during DS. In conclusion, the dust may carry pollutants on its surface to downwind areas, leading to increased risks of particle toxicity.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library