Comparison of Heavy Metal Adsorption by Peat Moss and Peat Moss-Derived Biochar Produced Under Different Carbonization Conditions
2015
Lee, Seul-Ji | Park, Jin Hee | Ahn, Yong-Tae | Chung, Jae Woo
Biochar has attracted recent research interest as a metal adsorbent. The heavy metal adsorption capacity of biochar can be controlled by the carbonization of biochar. The adsorption characteristics of heavy metals (Pb, Cu, and Cd) by peat moss-derived biochars produced under different carbonization conditions were investigated by a series of batch experiments. Biochars were produced by the pyrolysis of peat moss over a temperature range of 400–1000 °C for 30–90 min. Biochar produced at 800 °C for 90 min was the most efficient for the removal of Pb and Cu, when weight loss ratio was considered. The pseudo-second-order and Langmuir models adequately described kinetics and isotherms, respectively, of heavy metal adsorption on peat moss-derived biochar, indicating that heavy metal ions were chemically adsorbed on the adsorption sites as uniform monolayer. The peat moss-derived biochar showed the highest maximum adsorption capacity for Pb (81.3 mg/g), followed by Cd and Cu, which were 39.8 and 18.2 mg/g, respectively. This study shows that peat moss-derived biochar is an effective adsorbent to remediate heavy metal-contaminated water.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library