Continuous production of biofuel from refined and used palm olein oil with supercritical methanol at a low molar ratio
2015
Sakdasri, Winatta | Sawangkeaw, Ruengwit | Ngamprasertsith, Somkiat
The high energy consumption and high environmental impact in the supercritical methanol (SCM) process primarily originates from the preheating of reactants and the recovery of excess alcohols. This work demonstrated the synthesis of biofuel using a lowered methanol to oil molar ratio of 12:1, instead of the 40:1–42:1 ratios that are commonly employed in conventional SCM. The apparent density of the reacting mixture was measured and applied to accurately calculate residence times in a continuous reactor. The effects of residence time were considered from 10 to 25min. The results revealed that excessive residence times reduced the ester content, especially for unsaturated esters, in the resulting biofuel. A residence time of 20min was recommended to simultaneously achieve a maximum ester content of 90% and a triglyceride conversion of up to 99%. Used palm olein oil with high free fatty acid (4.56wt.%) can be employed as a feedstock and give a maximum ester content of 80%. In addition, the side reaction between glycerol and methanol at 400°C and 15MPa showed a positive effect in increasing fuel yield by 2%–7%.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library