Variation in soil aggregate–size distribution affects the dissipation of polycyclic aromatic hydrocarbons in long-term field-contaminated soils
2017
Wei, Ran | Ni, Jinzhi | Chen, Weifeng | Yang Yusheng,
Soil organic matter (SOM) is the main adsorbent for polycyclic aromatic hydrocarbons (PAHs) and the principal aggregating agent for soil aggregation that can affect PAH bioavailability and bioaccessibility in soils. The objective of this study was to analyze the relationship between PAH dissipation and variation in soil aggregate–size distribution in two field-contaminated soils with different soil organic C (SOC) content (Anthrosols, 1.41% SOC; Phaeozems, 8.51% SOC) in phytoremediation with alfalfa. The results showed that there were significant reductions of 10.2 and 15.4% of the total PAHs in unplanted and planted treatments, respectively, for Anthrosols. However, there was no significant reduction of total PAHs in either unplanted or planted treatment for Phaeozems. For Anthrosols, mass percentages of coarse sand and fine sand were significantly reduced while coarse silt and fine silt were significantly increased for the planted soil compared to the initial soil (p < 0.05). For Phaeozems, there was no significant variation in aggregate–size distribution among different treatments except that coarse silt in planted and unplanted soil was slightly reduced. The main reason for the dissipation of PAHs in Anthrosols could be that macroaggregates were broken into microaggregates, which made some trapped PAHs become bioaccessible to soil microorganisms.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library