Coupling loss characteristics of N-P-C through runoff and sediment in the hilly region of SE China under simulated rainfall
2021
Deng, Longzhou | Sun, Tianyu | Fei, Kai | Zhang, Liping | Fan, Xiaojuan | Wu, Yanhong | Ni, Liang | Sun, Rui
Soil total carbon (TC), phosphorus (P), and nitrogen (N) exports from the weathered granite slopes are greatly influenced by the complex hydrological processes and terrain factors. In this study, the coupling loss characteristics of N-P-C via runoff and sediment were studied with two soil tanks under simulated rainfalls. Three soils respectively derived from the tillage layer (T-soil), laterite layer (L-soil), and sand layer (S-soil) were employed to determine the interactions of hydrology and topography on N-P-C exports under three rainfall intensities (1.5, 2.0, and 2.5 mm/min). The erosion degree of different soils displayed an order of S-soil > L-soil > T-soil. The results showed that surface flow was the main runoff form for L- and T-soil, while underground flow was predominant for S-soil. There was a linear correlation between sediment and surface flow (R² > 0.78). Surface flow was the dominant pathway of P loss via runoff with underground flow being an important supplementation, and the main P loss pattern switched between dissolved phosphorus (DP) and particle phosphorus (PP) during the experiment. However, P lost via eroded sediment accounted for more than 94% of the TP loss amount. N presented an opposite trend to P and was mainly lost via underground flow. The main N loss form in surface and underground flow was NO₃⁻-N. Underground flow was the predominant total nitrogen (TN) loss pathway for S- and L-soil, followed by sediment and surface flow. For T-soil, TN lost via runoff was much greater than that carried by eroded sediment. TC for S-soil was mainly lost via underground flow while that for L- and T-soil was mostly lost via surface flow. Both N-P loss loads in surface flow and P loss load in underground flow were positively correlated with TC loss load (p < 0.05), indicating that the presence of organic matter brings about more nutrient losses. These results expand our understanding of the combined effects of rainfall intensity and erosion degree on runoff and sediment yields as well as N-P-C losses from the bare weathered granite slopes of SE China.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library