Biodegradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by Phanerochaete chrysosporium in the presence of Cd2+
2017
Cao, Yajuan | Yin, Hua | Peng, Hui | Tang, Shaoyu | Lu, Guining | Dang, Zhi
Aerobic biodegradation of 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) by Phanerochaete chrysosporium in the presence of Cd²⁺ was investigated in this study. The results showed that P. chrysosporium could effectively degrade BDE-47, and its extracellular enzyme played an important role in the process of decomposition. BDE-47 biodegradation by fungi was more tolerant than extracellular enzyme in the presence of Cd²⁺. Also, both of the activity of two typical enzymes, MnP and LiP, descended with ascended Cd²⁺ concentration. Based on the four mono-hydroxylated PBDEs (5-OH-BDE-47, 4′-OH-BDE-17, 6-OH-BDE-47, and 2′-OH-BDE-28) and two bromophenols (2,4-DBP, 4-BP) detected, three possible degradation pathways were proposed, inferring that BDE-47 was more easily to transform via hydroxylation. With addition of Cd²⁺, the types of degradation products did not change, merely a variation of the content of these products observed. Meanwhile, the major metabolites of BDE-47, bromophenol compounds, have been found to be transformed or even mineralized by P. chrysosporium quickly, which also helped better explain why the amounts of BDE-47 decomposed did not match with that of the metabolites detected.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library