Local interspecies introgression is the main cause of extreme levels of intraspecific differentiation in mussels
2016
Fraïsse, Christelle | Belkhir, Khalid | Welch, John | Bierne, Nicolas | Institut des Sciences de l'Evolution de Montpellier (UMR ISEM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS) | Observatoire de REcherche Méditerranéen de l'Environnement (OSU OREME) ; Université Montpellier 2 - Sciences et Techniques (UM2)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Department of Genetics [Cambridge] ; University of Cambridge [UK] (CAM)
International audience
Show more [+] Less [-]English. Structured populations, and replicated zones of contact between species, are an ideal opportunity to study regions of the genome with unusual levels of differentiation; and these can illuminate the genomic architecture of species isolation, and the spread of adaptive alleles across species ranges. Here, we investigated the effects of gene flow on divergence and adaptation in the Mytilus complex of species, including replicated parental populations in quite distant geographical locations. We used target enrichment sequencing of 1269 contigs of a few kb each, including some genes of known function, to infer gene genealogies at a small chromosomal scale. We show that geography is an important determinant of the genomewide patterns of introgression in Mytilus and that gene flow between different species, with contiguous ranges, explained up to half of the intraspecific outliers. This suggests that local introgression is both widespread and tends to affect larger chromosomal regions than purely intraspecific processes. We argue that this situation might be common, and this implies that genome scans should always consider the possibility of introgression from sister species, unsampled differentiated backgrounds, or even extinct relatives, for example Neanderthals in humans. The hypothesis that reticulate evolution over long periods of time contributes widely to adaptation, and to the spatial and genomic reorganization of genetic backgrounds, needs to be more widely considered to make better sense of genome scans.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique