Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides
2015
Romdhane, Sana | Devers-Lamrani, Marion | Martin-Laurent, Fabrice | Calvayrac, Christophe | Rocaboy-Faquet, Emilie | Riboul, David | Cooper, Jean-François | Barthelmebs, Lise | Laboratoire de Chimie des Biomolécules et de l'Environnement (LCBE) ; Université Montpellier 1 (UM1)-Université de Perpignan Via Domitia (UPVD) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) ; Observatoire océanologique de Banyuls (OOB) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-PIERRE FABRE-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Génie Chimique (LGC) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)
International audience
Show more [+] Less [-]English. In this study, a bacterial strain able to use sulcotrione,a β-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce β-triketone degrading capacity,suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrademesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione.Mesotrione degradation pathway leads to the accumulation of-methylsulfonyl-2-nitrobenzoic acid(MNBA) and 2-amino-4 methylsulfonylbenzoic acid(AMBA), two well-known metabolites of this herbicide. Along with the dissipation of β-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase(HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two β-triketones.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique